

MARKS: 20

MATHEMATICS

STD: X

Chapter: Circles

Duration: 50 minutes

Q.1. Solve (1 Mark each)

- At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A is

 (A) 4 cm
 (B) 5 cm
 (C) 6 cm
 (D) 8 cm
- 2. In the given figure, if O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 50°

with PQ, then \angle POQ is equal to

		3	5	0	R
(A) 100°	(B) 80°	(C) 90°	(D) 75°		

3. In the given figure, if PA and PB are tangents to the circle with centre O such that $\angle APB = 50^{\circ}$, then $\angle OAB$ is equal to

(A) 25° (B) 30° (C) 40° (D) 50°

4. In the given figure, if PQR is the tangent to a circle at Q whose centre is O, AB is a chord parallel to PR and

Q.2. Solve (2 Marks)

 \angle BQR = 70°, then \angle AQB is equal to

1. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.

Q.3. Solve (3 Mark each)

1. Two tangents PQ and PR are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral.

2. A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc

PRQ

Q.4. Solve (4 Mark each)

- From an external point P, two tangents, PA and PB are drawn to a circle with centre O. At one point E on the circle tangent is drawn which intersects PA and PB at C and D, respectively. If PA = 10 cm, find the perimeter of the triangle PCD.
- 2. AB is a diameter and AC is a chord of a circle with centre O such that $\angle BAC = 30^{\circ}$. The tangent at C intersects extended AB at a point D. Prove that BC = BD.